匿名模糊位置

已将您的地理位置进行模糊化处理,谨防第三方窃取您的位置信息。

综合

影视

购物

  • 转化思想在数学学习中的应用

    它是指将未知的,陌生的,复杂的问题通过事物之间的内在联系转化为已知的,熟悉的,简单的问题,从而使问题顺利解决的数学思想。几何变换,因式分解,解析几何,微积分,乃至古代数学的尺规作等数学理论无不渗透着转化的思想。常见的转化方式有:一般、特殊转化,等价转化,复杂、简单转化,数形转化,构造转化,联想转化,类比转化等。

  • 转化思想|一切数学思想方法的核心

    转化思想是数学学习过程中常用的思想方法,是数学问题解决的基本思路和途径之一,传颂千古的司马光砸缸、曹冲称象等故事,都...

  • 常用的数学思想方法

    篇1 1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

  • 如何在数学教学中渗透转化思想

    转化思想就是利用已有的知识和经验,将复杂的转化为简单的,将未知的转化为已知的,将看来不能解答的转化成能解答的,简单地说...

  • 阅读理解:转化思想是常用的数学思想之一.在研究新问题或复杂问题时,常常把问题转化为熟悉的或比较简单的问题来解决.如解一元二次方程是...

    转化思想是常用的数学思想之一.在研究新问题或复杂问题时,常常把问题转化为熟悉的或比较简单的问题来解决.如解一元二次方程是转化成一元一次方程来解决的;解分式方程是转化为整式方程来解决的.由于“去分母”可能产生增根,所以解分式方程必须检验. 利用转化思想,我们还可以解一些新的方程,如无理方程(根号下含有未知数的方程).解无理方程关键是要去掉根号,可以将方程适当变形后两边同时平方,将其转化为整式方程.由于“去根号”可能产生增根,所以解无理方程

  • 在数学教学中渗透转化与化归的数学思想教育

    515041转化与化归的数学思想是最重要的数学思想方法,几乎所有的数学问题都必须通过转化为更简单的或者我们所熟悉的数学问题加以解决.所以我们在日常教学中,必须坚持不懈、潜移默化地向学生渗透转化与化归的数学思想教育,使学生能正...

  • “转化思想”在教学中的运用

    【摘要】: <正>转化思想是一种重要的数学思想,教师该如何运用转化思想让学生能轻松、快乐地学习新知呢?笔者认为,教师可以从让学生增强转化的意识、明确转化的方向、学会转化的方法三方面来着手,从而让"转化思想"在教学中得以适当、合理地适用。一、增强转化的意识数学知识系统性强,前后联系紧密,新知是建立在旧知的基础之上的,因此,把新知转化为旧知进行教学,把新知识纳入到原有的知识结构之中,无形之中就渗透了转化思想。中国期刊全文数据库 1

  • 转化与化归的数学思想

    【摘要】:<正>转化与化归是历年高考重点考查的数学思想.其思维特点是对原问题换一种方式、换一个观点加以考虑,其作用是将复杂问题转化为简单问题,将生疏问题转化为熟悉问题,从而为解题打开通道.因此,我们应掌握一些常...

  • 转化思想在小学数学中的应用

    小学数学中的转化思想,渗透于各类知识之中,在教学的各个阶段都起重要的作用.同时,转化思想是数学思想的核心和精髓,是数学思想的灵魂.因此,要使学生获得必要的数学思想方法,首先应加强转化思想的...

为您找到约 1,000,000 条相关结果
上一页12345678910下一页